Edge-based Facial Feature Extraction Using Gabor Wavelet and Convolution Filters

نویسنده

  • Rosdiyana Samad
چکیده

Feature extraction is a crucial step for many systems of face detection and facial expression recognition. In this paper, we present edge-based feature extraction for recognizing six different expressions, which are angry, fear, happy, neutral, sadness and surprise. Edge detection is performed by using Gabor wavelet and convolution filters. In this paper we propose two convolution kernels that are specific for the edge detection of facial components in two orientations. In this study, Principal Component Analysis (PCA) is used to reduce the features dimension. To validate the performance of our proposed feature extraction, the generated features are classified using Support Vector Machine. The experimental results demonstrated that the proposed feature extraction method could generate significant facial features and these features are able to be classified into each expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image classification of artificial fingerprints using Gabor wavelet filters, self-organising maps and Hermite/Laguerre neural networks

Image classification was performed using Gabor wavelet filters for image feature extraction, self-organising maps (SOM) for dimensional reduction of Gabor wavelet filters, and forward (FNN), Hermite (HNN) and Laguerre (LNN) neural networks to classify real and artificial fingerprint images from optical coherence tomography (OCT). Use of a SOM after Gabor edge detection of OCT images of fingerpr...

متن کامل

Artificial Neural Network Based Face Detection Using Gabor Feature Extraction

This paper proposes a classification-based face detection method using Gabor filter features. Considering the desirable characteristics of spatial locality and orientation selectivity of the Gabor filter, we design filters for extracting facial features from the local image. The feature vector based on Gabor filters is used as the input of the classifier, which is a Feed Forward neural network ...

متن کامل

An Improved Average Gabor Wavelet Filter Feature Extraction Technique for Facial Expression Recognition

Facial Expression Recognition has been a very important topic for research in computer pattern recognition and currently there is no method of facial Expression recognition system that have 100% recognition rate. So research issues are to improve recognition rate by improving the pre-processing of datasets, improving the feature extraction method and using the best classifier for face recogniti...

متن کامل

Gabor and Log-Gabor Wavelet for Face Recognition

In practice Gabor wavelet is often applied to extract relevant features from a facial image. This wavelet is constructed using filters of multiple scales and orientations. Based on Gabor’s theory of communication, two methods are proposed to acquire initial features from 2D images that are Gabor wavelet and Log-Gabor wavelet. Theoretically the main difference between these two wavelets is Log-G...

متن کامل

The Integration of PCA, FLD and Gabor Two-dimensional Wavelet Transformation using Facial Expression Feature Extraction

In order to improve the rate of facial expression recognition. The Gabor wavelet fusion PCA+FLD method is proposed as a new method this paper. Firstly, face image preprocessing, and then carries on the two-dimensional wavelet transform Gabor, first constructed five scale eight directional wavelet filter, through the PCA+FLD method for dimensionality reduction, and finally obtaining an optimum e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011